4.1 Article

MEK5 is Activated by Shear Stress, Activates ERK5 and Induces KLF4 to Modulate TNF Responses in Human Dermal Microvascular Endothelial Cells

期刊

MICROCIRCULATION
卷 18, 期 2, 页码 102-117

出版社

WILEY
DOI: 10.1111/j.1549-8719.2010.00071.x

关键词

inflammation; skin microvascualture; MAP kinases; vascular leak; adhesion molecules

资金

  1. Yale-Boehringer Ingel-heim Pharmaceuticals, Inc. Research Alliance
  2. National Institutes of Health (NIH) [RO1-HL036003]
  3. Yale Skin Diseases Research Center (NIH) [P30-AR041942]

向作者/读者索取更多资源

P>Objective: ECs lining arteries respond to LSS by suppressing pro-inflammatory changes, in part through the activation of MEK5, ERK5 and induction of KLF4. We examined if this anti-inflammatory pathway operates in human ECs lining microvessels, the principal site of inflammatory responses. Methods: We used immunofluorescence microscopy of human skin to assess ERK5 activation and KLF4 expression in HDMECs in situ. We applied LSS to or overexpressed MEK5/CA in cultured HDMECs and assessed gene expression by microarrays and qRT-PCR and protein expression by Western blotting. We assessed effects of MEK5/CA on TNF responses using qRT-PCR, FACS and measurements of HDMEC monolayer electrical resistance. We used siRNA knockdown to assess the role of ERK5 and KLF4 in these responses. Results: ERK5 phosphorylation and KLF4 expression is observed in HDMECs in situ. LSS activates ERK5 and induces KLF4 in cultured HDMECs. MEK5/CA-transduced HDMECs show activated ERK5 and increased KLF4, thrombomodulin, eNOS, and ICAM-1 expression. MEK5 induction of KLF4 is mediated by ERK5. MEK5/CA-transduced HDMECs are less responsive to TNF, an effect partly mediated by KLF4. Conclusions: MEK5 activation by LSS inhibits inflammatory responses in microvascular ECs, in part through ERK5-dependent induction of KLF4.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据