4.7 Review

Electrochemical biosensing based on noble metal nanoparticles

期刊

MICROCHIMICA ACTA
卷 177, 期 3-4, 页码 245-270

出版社

SPRINGER WIEN
DOI: 10.1007/s00604-011-0758-1

关键词

Biosensors; Direct electron transfer; Electrode modification; Genesensors; Immunosensors; Noble metal nanoparticles; Protein immobilization; Signal amplification

向作者/读者索取更多资源

The interest in the fabrication of electrochemical biosensors with high sensitivity, selectivity and efficiency is rapidly growing. In recent years, noble metal nanoparticles (NMNPs), with extraordinary conductivity, large surface-to-volume ratio and biocompatibility, have been extensively employed for developing novel electrochemical sensing platforms and improving their performances. Through distinct surface modification strategies (e.g. self-assembly, layer-by-layer, hybridization and sol-gel technology), NMNPs provide well control over the microenvironment of biological molecules retaining their activity, and facilitate the electron transfer between the redox center of biomolecules and electrode surface. Moreover, NMNPs have been involved into biorecognition events (e.g. immunoreactions, DNA hybridization and ligand-receptor interactions) by conjugating with various biomolecules, chemical labels and other nanomaterials, achieving the signal transduction and amplification. The aim of this review is to summarize different strategies for NMNP-based signal amplification, as well as to provide a snapshot of recent advances in the design of electrochemical biosensing platforms, including enzyme/protein sensors focused on their direct electrochemistry on NMNP-modified electrode surface; immunosensors and gene sensors in which NMNPs not only participate into biorecognition, but also act as electroactive tags to enhance the signal output. In addition, NMNP alloy-based multifunctional electrochemical biosensors are briefly introduced in terms of their unique heterostructures and properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据