4.3 Article

Comparison of global and mode of action-based models for aquatic toxicity

期刊

SAR AND QSAR IN ENVIRONMENTAL RESEARCH
卷 26, 期 3, 页码 245-262

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/1062936X.2015.1018939

关键词

multiple linear regression; mode of action; octanol-water partition coefficient; aquatic toxicity; linear discriminant analysis (LDA); quantitative structure-activity relationship (QSAR)

向作者/读者索取更多资源

The ability to estimate aquatic toxicity is a critical need for ecological risk assessment and chemical regulation. The consensus in the literature is that mode of action (MOA) based toxicity models yield the most toxicologically meaningful and, theoretically, the most accurate results. In this study, a two-step prediction methodology was developed to estimate acute aquatic toxicity from molecular structure. In the first step, one-against-the-rest linear discriminant analysis (LDA) models were used to predict the MOA. The LDA models were able to predict the MOA with 85.8-88.8% accuracy for broad and specific MOAs, respectively. In the second step, a multiple linear regression (MLR) model corresponding to the predicted MOA was used to predict the acute aquatic toxicity value. The MOA-based approach was found to yield similar external prediction accuracy (r(2) = 0.529-0.632) to a single global MLR model (r(2) = 0.551-0.562) fit to the entire training set. Overall, the global hierarchical clustering approach yielded a higher combination of accuracy and prediction coverage (r(2) = 0.572, coverage = 99.3%) than the other approaches. Utilizing multiple two-dimensional chemical descriptors in MLR models yielded comparable results to using only the octanol-water partition coefficient (log K-ow).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据