4.2 Article

HrcA and DnaK are important for static and continuous-flow biofilm formation and disinfectant resistance in Listeria monocytogenes

期刊

MICROBIOLOGY-SGM
卷 156, 期 -, 页码 3782-3790

出版社

SOC GENERAL MICROBIOLOGY
DOI: 10.1099/mic.0.043000-0

关键词

-

向作者/读者索取更多资源

The food-borne pathogen Listeria monocytogenes is able to form biofilms in food processing environments. Since biofilms are generally difficult to eradicate during clean-up procedures, they pose a major risk for the food industry. Stress resistance mechanisms involved in L. monocytogenes biofilm formation and disinfectant resistance have, to our knowledge, not been identified thus far. In this study, we investigated the role of hrcA, which encodes the transcriptional regulator of the class I heat-shock response, and dnaK, which encodes a class I heat-shock response chaperone protein, in static and continuous-flow biofilm formation and resistance against benzalkonium chloride and peracetic acid. Induction of both hrcA and dnaK during continuous-flow biofilm formation was observed using quantitative real-time PCR and promoter reporters. Furthermore, in-frame deletion and complementation mutants of hrcA and dnaK revealed that HrcA and DnaK are required to reach wild-type levels of both static and continuous-flow biofilms. Finally, disinfection treatments of planktonic-grown cells and suspended static and continuous-flow biofilm cells of wild-type and mutants showed that HrcA and DnaK are important for resistance against benzalkonium chloride and peracetic acid. In conclusion, our study revealed that HrcA and DnaK are important for L. monocytogenes biofilm formation and disinfectant resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据