4.2 Article

SwrAA activates poly-γ-glutamate synthesis in addition to swarming in Bacillus subtilis

期刊

MICROBIOLOGY-SGM
卷 155, 期 -, 页码 2282-2287

出版社

MICROBIOLOGY SOC
DOI: 10.1099/mic.0.026435-0

关键词

-

资金

  1. Italian 'Ministero dell'Istruzione, dell'Universita e delta Ricerca' [2005058814]
  2. Regione Lombardia

向作者/读者索取更多资源

Poly-gamma-glutamic acid (gamma-PGA) is an extracellular polymer produced by various strains of Bacillus. It was first described as the component of the capsule in Bacillus anthracis, where it plays a relevant role in virulence. gamma-PGA is also a distinctive component of 'natto', a traditional Japanese food consisting of soybean fermented by Bacillus subtilis (natto). Domesticated B. subtilis strains do not synthesize gamma-PGA although they possess the functional biosynthetic pgs operon. In the present work we explore the correlation between the genetic determinants, swrAA and degU, which allow a derivative of the domestic strain JH642 to display a mucoid colony morphology on LB agar plates due to the production of gamma-PGA. Full activation of the pgs operon requires the co-presence of SwrAA and the phosphorylated form of DegU (DegU similar to P). The presence of either DegU similar to P or SwrAA alone has only marginal effects on pgs operon transcription and gamma-PGA production. Although SwrAA was identified as necessary for swarming and full swimming motility together with DegU, we show that motility is not involved in gamma-PGA production. Activation of gamma-PGA synthesis is therefore a motility-independent phenotype in which SwrAA and DegU similar to P display a cooperative effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据