4.7 Article

Phylogenetically Diverse Cultivable Fungal Community and Polyketide Synthase (PKS), Non-ribosomal Peptide Synthase (NRPS) Genes Associated with the South China Sea Sponges

期刊

MICROBIAL ECOLOGY
卷 62, 期 3, 页码 644-654

出版社

SPRINGER
DOI: 10.1007/s00248-011-9859-y

关键词

-

资金

  1. High-Tech Research and Development Program of China [2011AA09070203]
  2. National Natural Science Foundation of China (NSFC) [41076077, 30821005]

向作者/读者索取更多资源

Compared with sponge-associated bacteria, the phylogenetic diversity of fungi in sponge and the association of sponge fungi remain largely unknown. Meanwhile, no detection of polyketide synthase (PKS) or non-ribosomal peptide synthase (NRPS) genes in sponge-associated fungi has been attempted. In this study, diverse and novel cultivable fungi including 10 genera (Aspergillus, Ascomycete, Fusarium, Isaria, Penicillium, Plectosphaerella, Pseudonectria, Simplicillium, Trichoderma, and Volutella) in four orders (Eurotiales, Hypocreales, Microascales, and Phyllachorales) of phylum Ascomycota were isolated from 10 species marine sponges in the South China Sea. Eurotiales and Hypocreales fungi were suggested as sponge generalists. The predominant isolates were Penicillium and Aspergillus in Eurotiales followed by Volutella in Hypocreales. Based on the conserved Beta-ketosynthase of PKS and A domain of NRPS, 15 polyketide synthases, and four non-ribosomal peptides synthesis genes, including non-reducing and reducing PKSs and hybrid PKS-NRPS, were detected in these fungal isolates. A lateral gene transfer event was indicated in the comparison between the phylogenetic diversity of 18S rRNA genes and beta-ketoacyl synthase domain sequences. Some fungi, especially those with PKS or NRPS genes, showed antimicrobial activity against P. fluorescens, S. aureus and B. subtilis. It was the first time to investigate PKS and NRPS genes in sponge-associated fungi. Based on the detected antibiotics biosynthesis-related PKS and NRPS genes and antimicrobial activity, the potential ecological role of sponge-associated fungi in the chemical defense for sponge host was suggested. This study extended our knowledge of sponge-associated fungal phylogenetic diversity and their potential roles in the chemical defense.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据