4.7 Article

Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: The role of extra copies of glpK, glpX, and tktA genes

期刊

MICROBIAL CELL FACTORIES
卷 13, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12934-014-0096-1

关键词

Escherichia coli; Glycerol; Crude glycerol; L-phenylalanine; Glycerol kinase; Transketolase; Fructose-1; 6-bisphosphatase; Metabolic engineering

资金

  1. Deutsche Bundesstiftung Umwelt [AZ 20006/881]

向作者/读者索取更多资源

Background: For the production of L-phenylalanine (L-Phe), two molecules of phosphoenolpyruvate (PEP) and one molecule erythrose-4-phosphate (E4P) are necessary. PEP stems from glycolysis whereas E4P is formed in the pentose phosphate pathway (PPP). Glucose, commonly used for L-Phe production with recombinant E. coli, is taken up via the PEP-dependent phosphotransferase system which delivers glucose-6-phosphate (G6P). G6P enters either glycolysis or the PPP. In contrast, glycerol is phosphorylated by an ATP-dependent glycerol kinase (GlpK) thus saving one PEP. However, two gluconeogenic reactions (fructose-1,6-bisphosphate aldolase, fructose-1,6-bisphosphatase, FBPase) are necessary for growth and provision of E4P. Glycerol has become an important carbon source for biotechnology and reports on production of L-Phe from glycerol are available. However, the influence of FBPase and transketolase reactions on L-Phe production has not been reported. Results: L-Phe productivity of parent strain FUS4/pF81 (plasmid-encoded genes for aroF, aroB, aroL, pheA) was compared on glucose and glycerol as C sources. On glucose, a maximal carbon recovery of 0.19 mM C-Phe/C-Glucose and a maximal space-time-yield (STY) of 0.13 g l(-1) h(-1) was found. With glycerol, the maximal carbon recovery was nearly the same (0.18 mM C-Phe/C-Glycerol), but the maximal STY was higher (0.21 g l(-1) h(-1)). We raised the chromosomal gene copy number of the genes glpK (encoding glycerol kinase), tktA (encoding transketolase), and glpX (encoding fructose-1,6-bisphosphatase) individually. Overexpression of glpK (or its feedback-resistant variant, glpKG232D) had little effect on growth rate; L-Phe production was about 30% lower than in FUS4/pF81. Whereas the overexpression of either glpX or tktA had minor effects on productivity (0.20 mM CPhe/CGlycerol; 0.25 g l(-1) h(-1) and 0.21 mM CPhe/CGlycerol; 0.23 g l(-1) h(-1), respectively), the combination of extra genes of glpX and tktA together led to an increase in maximal STY of about 80% (0.37 g l(-1) h(-1)) and a carbon recovery of 0.26 mM CPhe/CGlycerol. Conclusions: Enhancing the gene copy numbers for glpX and tktA increased L-Phe productivity from glycerol without affecting growth rate. Engineering of glycerol metabolism towards L-Phe production in E. coli has to balance the pathways of gluconeogenesis, glycolysis, and PPP to improve the supply of the precursors, PEP and E4P.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据