4.7 Article

Delivery of a functional anti-trypanosome Nanobody in different tsetse fly tissues via a bacterial symbiont, Sodalis glossinidius

期刊

MICROBIAL CELL FACTORIES
卷 13, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/s12934-014-0156-6

关键词

(3-10); Sodalis glossinidius; Symbiont; Paratransgenesis; Recombinant; Glossina; Delivery; Functional; Nanobody; In vivo; Midgut

资金

  1. ITM SOFI grant
  2. InterUniversity Attraction Pole programme (IAP), FWO
  3. ERC

向作者/读者索取更多资源

Background: Sodalis glossinidius, a vertically transmitted microbial symbiont of the tsetse fly, is currently considered as a potential delivery system for anti-trypanosomal components that reduce or eliminate the capability of the tsetse fly host to transmit parasitic trypanosomes, an approach also known as paratransgenesis. An essential step in developing paratransgenic tsetse is the stable colonization of adult flies and their progeny with recombinant Sodalis bacteria, expressing trypanocidal effector molecules in tissues where the parasite resides. Results: In this study, Sodalis was tested for its ability to deliver functional anti-trypanosome nanobodies (Nbs) in Glossina morsitans morsitans. We characterized the in vitro and in vivo stability of recombinant Sodalis (recSodalis) expressing a potent trypanolytic nanobody, i.e. Nb_An46. We show that recSodalis is competitive with WT Sodalis in in vivo conditions and that tsetse flies transiently cleared of their endogenous WT Sodalis population can be successfully repopulated with recSodalis at high densities. In addition, vertical transmission to the offspring was observed. Finally, we demonstrated that recSodalis expressed significant levels (ng range) of functional Nb_An46 in different tsetse fly tissues, including the midgut where an important developmental stage of the trypanosome parasite occurs. Conclusions: We demonstrated the proof-of-concept that the Sodalis symbiont can be genetically engineered to express and release significant amounts of functional anti-trypanosome Nbs in different tissues of the tsetse fly. The application of this innovative concept of using pathogen-targeting nanobodies delivered by insect symbiotic bacteria could be extended to other vector-pathogen systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据