4.7 Article

High cell density cultivation of Escherichia coli K4 in a microfiltration bioreactor: a step towards improvement of chondroitin precursor production

期刊

MICROBIAL CELL FACTORIES
卷 10, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1475-2859-10-10

关键词

-

资金

  1. Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR) [L297]
  2. Div Of Chem, Bioeng, Env, & Transp Sys
  3. Directorate For Engineering [0854511] Funding Source: National Science Foundation
  4. Medical Research Council [G9817803B] Funding Source: researchfish

向作者/读者索取更多资源

Background: The bacteria Escherichia coli K4 produces a capsular polysaccharide (K4 CPS) whose backbone is similar to the non sulphated chondroitin chain. The chondroitin sulphate is one of the major components of the extra-cellular matrix of the vertebrate connective tissues and a high value molecule, widely employed as active principle in the treatment of osteoarthritis. It is usually obtained by extraction from animal tissues, but the risk of virus contaminations, as well as the scarceness of raw material, makes this productive process unsafe and unable to satisfy the growing market demand. In previous studies a new biotechnological process to produce chondroitin from Escherichia coli K4 capsular polysaccharide was investigated and a 1.4 g.L-1 K4 CPS concentration was reached using fed-batch fermentation techniques. In this work, on the trail of these results, we exploited new fermentation strategies to further improve the capsular polysaccharide production. Results: The inhibitory effect of acetate on the bacterial cells growth and K4 CPS production was studied in shake flask conditions, while a new approach, that combined the optimization of the feeding profiles, the improvement of aeration conditions and the use of a microfiltration bioreactor, was investigated in three different types of fermentation processes. High polysaccharide concentrations (4.73 +/- 0.2 g.L-1), with corresponding average yields (0.13 +/- 0.006 gK4 CPS.g(cdw)(-1)), were obtained; the increase of K4 CPS titre, compared to batch and fed-batch results, was of 16-fold and 3.3-fold respectively, while average yield was almost 3.5 and 1.4 fold higher. Conclusion: The increase of capsular polysaccharide titre confirmed the validity of the proposed fermentation strategy and opened the way to the use of the microfiltration bioreactor for the biotechnological production of chondroitin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据