4.1 Review

Oxidative Stress Induced in Microorganisms by Zero-valent Iron Nanoparticles

期刊

MICROBES AND ENVIRONMENTS
卷 26, 期 4, 页码 271-281

出版社

JAPANESE SOC MICROBIAL ECOLOGY, DEPT BIORESOURCE SCIENCE
DOI: 10.1264/jsme2.ME11126

关键词

ecotoxicity; Fenton reactions; ferrous iron; nZVI; reactive oxygen species (ROS)

资金

  1. Czech Ministry of Education [1M0554]

向作者/读者索取更多资源

Nanoscale zero-valent iron particles (nZVI), with sizes smaller than 100 nm, are promising for environmental remediation of polluted water, soil and sediments. nZVI particles have high potential for migration in the environment and are likely to interact not only with pollutant chemicals but also with living organisms. For these reasons, an environmental concern is rising with respect to unintended effects that need to be weighed against the benefits of remediation. The nZVI particles have a tendency to release electrons and Fe2+. The Fe2+ can convert less reactive hydrogen peroxide to more reactive oxygen species, particularly hydroxyl radicals, via the Fenton reaction. Hydroxyl radicals show strong biochemical activity and can react directly with membrane lipids, proteins and DNA. Reactive oxygen species are normally scavenged by antioxidants and various enzymes; however, elevated concentrations of ROS in microbial cells can result in oxidative stress. Cells under severe oxidative stress show various dysfunctions of membrane lipids, proteins and DNA. This review focuses on the processes resulting in oxidative stress and on up-to-date studies of nZVI-induced intracellular changes leading to such stress in microorganisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据