4.1 Article

Phylotype-Specific Productivity of Marine Bacterial Populations in Eutrophic Seawater, as Revealed by Bromodeoxyuridine Immunocytochemistry Combined with Fluorescence in situ Hybridization

期刊

MICROBES AND ENVIRONMENTS
卷 24, 期 4, 页码 315-321

出版社

JAPANESE SOC MICROBIAL ECOLOGY, DEPT BIORESOURCE SCIENCE
DOI: 10.1264/jsme2.ME09162

关键词

marine bacteria; bromodeoxyuridine; fluorescence in situ hybridization

资金

  1. Japan Society for the Promotion of Science ( JSPS) [192357, 17201004, 18310011, 18201003, 19030006]

向作者/读者索取更多资源

Among the fundamental questions in marine microbial ecology are which taxa or phylogenetic groups account for total bacterial productivity and what is the relative contribution of each. We combined bromodeoxyuridine (BrdU) immunocytochemistry and fluorescence in situ hybridization (BIC-FISH) to examine phylotype-specific contributions to total bacterial productivity in eutrophic seawater. We also examined year-round changes in phylotype-specific contributions and explored the factors controlling these changes. Monitoring by BIC-FISH throughout the year revealed the importance of the Roseobacter/Rhodobacter group as a constantly proliferating basic population (27% of all BrdU-positive cells), although their contribution was not significantly correlated with water temperature or with chlorophyll a or organic matter concentration. The Bacteroidetes were another important group, as they greatly increased in abundance after the end of phytoplankton blooms. Two other phylotypes tested, the SAR86 and Vibrio groups, changed their contributions to bacterial productivity with changes in water temperature. To our knowledge, this study was the first to estimate the yearly contribution of major subgroups of marine bacteria to total bacterial productivity in a seawater environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据