4.1 Review

Setting the tempo in land remediation: Short-term and long-term patterns in biodiversity recovery

期刊

MICROBES AND ENVIRONMENTS
卷 23, 期 1, 页码 13-19

出版社

JAPANESE SOC MICROBIAL ECOLOGY, DEPT BIORESOURCE SCIENCE
DOI: 10.1264/jsme2.23.13

关键词

carbon credits; compost; soil organic matter; soil reclamation; species succession

向作者/读者索取更多资源

Land to be remediated, such as those affected by heavy metals or organic pollutants, can be remediated using biological approaches. These include, quarries and strip mines, or land impacted by oil pollution or other organic pollutants. Phytoremediation is usually a key component of bioremediation. However, without restoring soil organic matter, the soil biodiversity takes decades to recover. The soil organisms are a key component of soil function, and support plant growth. In addition, the soil microbiology is essential both for bioremediation and supporting phytoremediation. Using inexpensive sources of quality organic matter, it should be possible to accelerate recovery of ecosystem health and biodiversity. One potential source of untapped organic matter is municipal solid waste as a composted amendment. The organic matter amendment promotes soil structure and the creation of adequate habitat and substrate for the soil decomposition food web. Long-term chronosequence studies indicate that soil food webs tend to make a transition after about 20 years to a stable community structure. This approach could be used to gain carbon credits by restoring degraded or polluted soils.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据