4.7 Article

Understanding the role of cross-arm binding efficiency in the activity of monoclonal and multispecific therapeutic antibodies

期刊

METHODS
卷 65, 期 1, 页码 95-104

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymeth.2013.07.017

关键词

Immunoglobulin; Bispecific antibody; Multispecific antibodies; Cross-arm binding; Avidity; Computational modeling

向作者/读者索取更多资源

Antibodies are essential components of the adaptive immune system that provide protection from extracellular pathogens and aberrant cells in the host. Immunoglobulins G, which have been adapted for therapeutic use due to their exquisite specificity of target recognition, are bivalent homodimers composed of two antigen binding Fab arms and an immune cell recruiting Fc module. In recent years significant progress has been made in optimizing properties of both Fab and Fc components to derive antibodies with improved affinity, stability, and effector function. However, systematic analyses of the efficiency with which antibodies crosslink their targets have lagged, despite the well-recognized importance of this cross-arm binding for optimal antigen engagement. Such an understanding is particularly relevant given the variety of next-generation multispecific antibody scaffolds under development. In this manuscript we attempt to fill this gap by presenting a framework for analysis and optimization of antibody cross-arm engagement. We illustrate the power of this integrated approach by presenting case studies for rational multispecific antibody design based on quantitative assessment of the interplay between antibody valency, target expression, and cross-arm binding efficiency. We conclude that optimal design parameters for cross-arm binding strongly depend on the biological context of the disease, and that cross-arm binding efficiency needs to be considered for successful application of multispecific antibodies. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据