4.1 Article

Detection of cometary amines in samples returned by Stardust

期刊

METEORITICS & PLANETARY SCIENCE
卷 43, 期 1-2, 页码 399-413

出版社

WILEY
DOI: 10.1111/j.1945-5100.2008.tb00629.x

关键词

-

向作者/读者索取更多资源

The abundances of amino acids and amines, as well as their enantiomeric compositions, were measured in samples of Stardust comet-exposed aerogel and foil using liquid chromatography with UV fluorescence detection and time of flight mass spectrometry (LC-FD/ToF-MS). A suite of amino acids and amines including glycine, L-alanine, beta-alanine (BALA), gamma-amino-n-butyric acid (GABA), epsilon-amino-n-caproic acid (EACA), ethanolamine (MEA), methylamine (MA), and ethylamine (EA) were identified in acid-hydrolyzed, hot-water extracts of these Stardust materials above background levels. With the exception of MA and EA, all other primary amines detected in comet-exposed aerogel fragments C2054,4 and C2086,1 were also present in the flight aerogel witness tile that was not exposed to the comet, indicating that most amines are terrestrial in origin. The enhanced relative abundances of MA and E-A in comet-exposed aerogel compared to controls, coupled with MA to EA ratios (C2054,4: 1.0 +/- 0.2; C2086,1: 1.8 +/- 0.2) that are distinct from preflight aerogels (E243-13C and E243-13F: 7 +/- 3). suggest that these volatile amines were captured from comet Wild 2. MA and EA were present predominantly in an acid-hydrolyzable bound form in the aerogel, rather than as free primary amines, which is consistent with laboratory analyses of cometary ice analog materials. It is possible that Wild 2 MA and EA were formed on energetically processed icy grains containing ammonia and approximately equal abundances of methane and ethane. The presence of cometary amines in Stardust material supports the hypothesis that comets were an important source of prebiotic organic carbon and nitrogen on the early Earth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据