4.5 Article

Modeling of Blast Furnace with Layered Cohesive Zone

出版社

SPRINGER
DOI: 10.1007/s11663-009-9327-y

关键词

-

资金

  1. Australian Research Council
  2. BlueScope Steel

向作者/读者索取更多资源

An ironmaking blast furnace (BF) is a moving bed reactor involving counter-, co-, and cross-current flows of gas, powder, liquids, and solids, coupled with heat exchange and chemical reactions. The behavior of multiple phases directly affects the stability and productivity of the furnace. In the present study, a mathematical model is proposed to describe the behavior of fluid flow, heat and mass transfer, as well as chemical reactions in a BF, in which gas, solid, and liquid phases affect each other through interaction forces, and their flows are competing for the space available. Process variables that characterize the internal furnace state, such as reduction degree, reducing gas and burden concentrations, as well as gas and condensed phase temperatures, have been described quantitatively. In particular, different treatments of the cohesive zone (CZ), i.e., layered, isotropic, and anisotropic nonlayered, are discussed, and their influence on simulation results is compared. The results show that predicted fluid flow and thermochemical phenomena within and around the CZ and in the lower part of the BF are different for different treatments. The layered CZ treatment corresponds to the layered charging of burden and naturally can predict the CZ as a gas distributor and liquid generator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据