4.6 Article

Effect of Tool Offset and Tool Rotational Speed on Enhancing Mechanical Property of Al/Mg Dissimilar FSW Joints

出版社

SPRINGER
DOI: 10.1007/s11661-013-1700-4

关键词

-

资金

  1. National Natural Science Foundation of China [51204108]
  2. Shanghai Committee of Science and Technology [11ZR1418100]
  3. Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry

向作者/读者索取更多资源

Friction stir welding (FSW) is a promising solid-state joining technique for producing effective welds between Al alloy and Mg alloy. However, previously reported Al/Mg dissimilar FSW joints generally have limited strength or barely any ductility with relatively high strength, which was blamed on the brittle intermetallics formed during welding. In this study, effective joints with comparably high strength (163 MPa) and large elongation (similar to 6 pct) were obtained. Three crucial/weak zones were identified in the welds: (1) Al/Mg bottom interface (BI) zone that resulted from the insufficient materials' intermixing and interdiffusion; (2) banded structure (BS) zone which contains intermetallic particles possibly formed by constitutional liquation; and (3) softened Al alloy to the retreating side (SAA-RS) zone due to the dissolution and coarsening of the strengthening precipitates. Three fracture modes observed in the tensile specimens perpendicular to the weld seam were found closely related to these zones. Their microstructure evolution with the change of tool rotational speed and tool offset was characterized and the consequent effect on the fracture mode alteration was studied. It turned out that enhancing the strengths of all these zones, but keeping the strength of the SAA lowest, is an effective way for enhancing ductility while keeping comparatively high strength in Al/Mg FSW joints. Also, suggestions for further improving the mechanical property of the Al/Mg dissimilar FSW joints were made accordingly for practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据