4.6 Article

Formability Analysis of Diode-Laser-Welded Tailored Blanks of Advanced High-Strength Steel Sheets

出版社

SPRINGER
DOI: 10.1007/s11661-009-9875-4

关键词

-

资金

  1. Government of Canada

向作者/读者索取更多资源

Currently, advances due to tailored blanking can be enhanced by the development of new grades of advanced high-strength steels (HSSs), for the further weight reduction and structural improvement of automotive components. In the present work, diode laser welds of three different grades of advanced high-strength dual-phase (DP) steel sheets (with tensile strengths of 980, 800, and 450 MPa) to high-strength low-alloy (HSLA) material were fabricated by applying the proper welding parameters. Formability in terms of Hecker's limiting dome height (LDH), the strain distribution on the hemispherical dome surface, the weld line movement during deformation, and the load-bearing capacity during the stretch forming of these different laser-welded blanks were compared. Finite element (FE) analysis of the LDH tests of both the parent metals and laser-welded blanks was done using the commercially available software package LS-DYNA (Livermore Software Technology Corporation, Livermore, CA); the results compared well with the experimental data. It was also found that the LDH was not affected by the soft zone or weld zone properties; it decreased, however, with an increase in a nondimensional parameter, the strength ratio (SR). The weld line movement during stretch forming is an indication of nonuniform deformation resulting in a decrease in the LDH. In all the dissimilar weldments, fracture took place on the HSLA side, but the fracture location shifted to near the weld line (at the pole) in tailor-welded blanks (TWBs) of a higher strength ratio.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据