4.6 Article

Interface Effects on the Fracture Mechanism of a High-Toughness Aluminum-Composite Laminate

出版社

SPRINGER
DOI: 10.1007/s11661-008-9679-y

关键词

-

资金

  1. CICYT [MAT200301172]

向作者/读者索取更多资源

The microstructure and the mechanical properties of a multilayer composite laminate based on aluminum 7075 and 2024 alloys produced by hot roll bonding were examined. The composite laminate has been tested at room temperature under Charpy-impact tests, three-point bend tests, and shear tests on the interfaces. The toughness of the post-rolling tempered and T6-treated composite laminate, measured by impact-absorbed energy in the crack-arrester orientation, was more than 20 times higher than that of the monolithic Al 7075 alloy and 7 times higher than that of Al 2024 alloy. The outstanding toughness increase of the composite laminate in the post-rolling tempered and T6-treated condition is mainly due to the mechanism of interface predelamination.'' By this fracture mechanism, the interfaces are debonded before the main crack reaches them, warranting delamination in all interfaces. Therefore, delamination and crack renucleation in every layer are responsible for the improvement in toughness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据