4.4 Review

Metal-mediated DNA damage and cell death: mechanisms, detection methods, and cellular consequences

期刊

METALLOMICS
卷 6, 期 8, 页码 1358-1381

出版社

OXFORD UNIV PRESS
DOI: 10.1039/c4mt00057a

关键词

-

资金

  1. National Science Foundation [CHE 1213912]
  2. Clemson University Chemistry Department

向作者/读者索取更多资源

The redox activity of metal ions can lead to the formation of highly reactive species that damage DNA, producing different oxidation products and types of damage depending upon the redox potentials of the DNA bases, formation of intermediate adducts, and identity of the reactive species. Other factors are also important in determining the degree of metal-mediated DNA damage, such as localization and redox chemistry of the metal ions or complexes and lifetimes of the reactive oxygen species generated. This review examines the types of DNA damage mediated by first-row transition metals under oxidative stress conditions, with emphasis on work published in the past ten years. Similarities and differences between DNA damage mechanisms of the first-row transition metals in vitro and in E. coli and human cells are compared and their relationship to disease development are discussed. Methods to detect this metal-mediated DNA damage, including backbone breakage, base oxidation, inter- and intra-strand crosslinking, and DNA-protein crosslinking are also briefly reviewed, as well as detection methods for reactive oxygen species generated by these metal ions. Understanding the conditions that cause metal-mediated DNA damage and metal generation of reactive oxygen species in vitro and in cells is required to develop effective drugs to prevent and treat chronic disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据