4.4 Article

Biomolecular sample considerations essential for optimal performance from cryogenic probes

期刊

METABOLOMICS
卷 10, 期 4, 页码 607-615

出版社

SPRINGER
DOI: 10.1007/s11306-013-0620-z

关键词

1.7 and 5 mm cryogenic probes; Salt tolerance; Quantitation; Metabolomic data collection; Biomolecular samples

资金

  1. Natural Sciences and Engineering Research Council

向作者/读者索取更多资源

For compounds dissolved in non-polar solvents, nuclear magnetic resonance spectroscopic investigations have benefited greatly from the advent of cryogenically cooled probes. Unfortunately the allure of significant increases in sensitivity may not be realized for compounds such as metabolites that are dissolved in solvents with high ionic-strengths such as solutions typically utilized for metabolomic or biomolecular investigations. In some cases there is little benefit from a cryogenically cooled probe over a conventional room temperature probe. Various sample preparation methods have been developed to minimize the detrimental effects of salt; for large numbers of metabolomic samples these preparation methods tend to be onerous and impractical. An alternative to manipulating the sample, is to utilize a probe that is designed to have a higher tolerance for solutions with high ionic-strengths. In order to acquire high-quality optimal data and choose the appropriate probe configuration (especially important for comparative quantitative investigations) the effects of salts and buffers on cryogenic probe performance must be understood. Herein we detail sample considerations for two cryogenic probes, a standard 5 mm and a narrow diameter 1.7 mm, in an effort to identify via integrals, intensities and noise levels the optimal choice for biomolecular investigations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据