4.7 Article

Metabolic engineering of Escherichia coli for high-yield uridine production

期刊

METABOLIC ENGINEERING
卷 49, 期 -, 页码 248-256

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2018.09.001

关键词

Uridine; Escherichia coli; Metabolic engineering; Pyr operon; CRISPR/Cas9; Chromosomal integration

资金

  1. National High Technology Research and Development Program [2015AA021003]
  2. National Natural Science Foundation of China [31700037]
  3. Key Technology R&D Program of Tianjin [16YFZCSY00770]

向作者/读者索取更多资源

Uridine is a kind of pyrimidine nucleoside that has been widely applied in the pharmaceutical industry. Although microbial fermentation is a promising method for industrial production of uridine, an efficient microbial cell factory is still lacking. In this study, we constructed a metabolically engineered Escherichia coli capable of high-yield uridine production. First, we developed a CRISPR/Cas9-mediated chromosomal integration strategy to integrate large DNA into the E. coli chromosome, and a 9.7 kb DNA fragment including eight genes in the pyrimidine operon of Bacillus subtilis F126 was integrated into the yghX locus of E. coli W3110. The resultant strain produced 3.3 g/L uridine and 4.5 g/L uracil in shake flask culture for 32 h. Subsequently, five genes involved in uridine catabolism were knocked out, and the uridine titer increased to 7.8 g/L. As carbamyl phosphate, aspartate, and 5'-phosphoribosyl pyrophosphate are important precursors for uridine synthesis, we further modified several metabolism-related genes and synergistically improved the supply of these precursors, leading to a 76.9% increase in uridine production. Finally, nupC and nupG encoding nucleoside transport proteins were deleted, and the extracellular uridine accumulation increased to 14.5 g/L. After 64 h of fed-batch fermentation, the final engineered strain UR6 produced 70.3 g/L uridine with a yield and productivity of 0.259 g/g glucose and 1.1 g/L/h, respectively. To the best of our knowledge, this is the highest uridine titer and productivity ever reported for the fermentative production of uridine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据