4.7 Article

Metabolic and pathway engineering to influence native and altered erythromycin production through E. coli

期刊

METABOLIC ENGINEERING
卷 19, 期 -, 页码 42-49

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2013.05.005

关键词

E. coli; Erythromycin; Substrate; Propionyl-CoA; Methylmalonyl-CoA; Antibiotic

向作者/读者索取更多资源

The heterologous production of the complex antibiotic erythromycin through Escherichia coli provides a unique challenge in metabolic engineering. In addition to introducing the 19 foreign genes needed for heterologous biosynthesis, E coli metabolism must be engineered to provide the propionyl-CoA and (2S)-methylmalonyl-CoA substrates required to allow erythromycin formation. In this work, three different pathways to propionyl-CoA were compared in the context of supporting E coli erythromycin biosynthesis. The comparison revealed that alternative citramalate and threonine metabolic pathways (both starting from exogenous glycerol) were capable of supporting final compound formation equal to a proven pathway reliant upon exogenous propionate. Furthermore, two pathways to (2S)-methylmalonyl-CoA were compared in the production of a novel benzyl-erythromycin analog. A pathway dependent upon exogenous methylmalonate improved selectivity and facilitated antibiotic assessment of this new analog. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据