4.7 Article

Improved computational performance of MFA using elementary metabolite units and flux coupling

期刊

METABOLIC ENGINEERING
卷 12, 期 2, 页码 123-128

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2009.10.002

关键词

Metabolic flux analysis; Isotope labeling; Optimization; Constraint-based modeling; Experimental design

资金

  1. DOE [DE-FG02-05ER25684]

向作者/读者索取更多资源

Extending the scope of isotope mapping models becomes increasingly important in order to analyze strains and drive improved product yields as more complex pathways are engineered into strains and as secondary metabolites are used as starting points for new products. Here we present how the elementary metabolite unit (EMU) framework and flux coupling significantly decrease the computational burden of metabolic flux analysis (MFA) when applied to large-scale metabolic models. We applied these techniques to a previously published isotope mapping model of Escherichia coli accounting for 238 reactions. We find that the combined use of EMU and flux coupling analysis leads to a ten-fold decrease in the number of variables in comparison to the original isotope distribution vector (IDV) version of the model. In addition, using OptMeas the task of identifying additional measurement choices to fully specify the flows in the metabolic network required only 2% of the computation time of the one using IDVs. The observed computational savings reveal the rapid progress in performing MFA with increasingly larger isotope models with the ultimate goal of handling genome-scale models of metabolism. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据