4.5 Article

Comparative pharmacological study of free radical scavenger, nitric oxide synthase inhibitor, nitric oxide synthase activator and cyclooxygenase inhibitor against MPTP neurotoxicity in mice

期刊

METABOLIC BRAIN DISEASE
卷 23, 期 3, 页码 335-349

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11011-008-9096-3

关键词

Parkinson's disease; MPTP; reactive oxygen species; reactive nitrogen species; inflammation; dopaminergic system; mice

向作者/读者索取更多资源

The biochemical and cellular changes that occur following the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are remarkably similar to that seen in idiopathic Parkinson's disease(PD). There is growing evidence indicating that reactive oxygen species (ROS), reactive nitrogen species (RNS) and inflammation are a major contributor to the pathogenesis and progression of PD. Hence, we investigated whether 7-nitroindazole [neuronal nitric oxide synthase (nNOS) inhibitor], edaravone (free radical scavenger), minocycline [inducible NOS (iNOS) inhibitor], fluvastatin [endothelial NOS (eNOS) activator], pitavastatin (eNOS activator), etodolac [cyclooxygenase-2 (COX-2) inhibitor] and indomethacin (COX inhibitor) can protect against MPTP neurotoxicity in mice under the same conditions. For the evaluation of each drug, the levels of dopamine, DOPAC and HVA were quantified using HPLC with an electrochemical detector. Four administrations of MPTP at 1-h intervals to mice produced marked depletion of dopamine, DOPAC (3,4-dihydroxyphenylacetic acid) and HVA (homovanilic acid) in the striatum after 5days. 7-Nitroindazole prevented dose-dependently a significant reduction in dopamine contents of the striatum 5days after MPTP treatment. In contrast, edaravone, minocycline, fluvastatin, pitavastatin, etodolac and indomethacin did not show the neuroprotective effect on MPTP-induced striatal dopamine, DOPAC and HVA depletions after 5days. The present study demonstrates that the overexpression of nNOS may play a major role in the neurotoxic processes of MPTP, as compared with the production of ROS, the overexpression of iNOS, the modulation of eNOS and the involvement of inflammatory response. Thus our pharmacological findings provide further information for progressive neurodegeneration of the nigrostriatal dopaminergic neuronal pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据