4.2 Article

Applying ultra-accelerated quantum chemical molecular dynamics technique for the evaluation of ligand protein interactions

期刊

MEDICINAL CHEMISTRY RESEARCH
卷 19, 期 1, 页码 1-10

出版社

BIRKHAUSER BOSTON INC
DOI: 10.1007/s00044-009-9167-y

关键词

Quantum chemical molecular dynamics (QCMD) calculation; Dihydrofolate reductase; Methotrexate; Enzyme; Density functional theory

向作者/读者索取更多资源

Ligand-protein interactions have been studied using several chemical information techniques including quantum chemical methods that are applied to truncated systems composed of the ligand molecule and the surrounding amino acids of the receptor. Fragmented quantum molecular chemical studies are also a choice to study the enzyme-ligand system holistically, however there are still restrictions on the number of water molecules that can be included in a study of this nature. In this work we adopt a completely different approach to study ligand-protein interactions accounting explicitly for as many solvent molecules as possible and without the need for a fragmented calculation. Furthermore, we embed our quantum chemical calculations within a molecular dynamics framework that enables a fundamentally fast system for quantum chemical molecular dynamic simulations (QCMD). Central to this new system for QCMD is the tight binding QC system, newly developed in our laboratories, which combined with the MD paradigm results in an ultra-accelerated QCMD method for protein-ligand interaction evaluations. We have applied our newly developed system to the dihydrofolate reductase (DHFR)-methotrexate (MTX) system. We show how the proposed method leads us to new insights into the main interactions that bind MTX to the enzyme, mainly the interaction between the amino group of MTX and Asp27 of DHFR, as well as MTX amino group with Thr113 of DHFR, which have been only elucidated experimentally to date.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据