4.6 Article

Mapping motion from 4D-MRI to 3D-CT for use in 4D dose calculations: A technical feasibility study

期刊

MEDICAL PHYSICS
卷 40, 期 6, 页码 -

出版社

WILEY
DOI: 10.1118/1.4801914

关键词

4D-MRI; 4D dose calculations

资金

  1. Swiss National Funds [320030-122526]
  2. Swiss National Science Foundation (SNF) [320030_122526] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Purpose: Target sites affected by organ motion require a time resolved (4D) dose calculation. Typical 4D dose calculations use 4D-CT as a basis. Unfortunately, 4D-CT images have the disadvantage of being a snap-shot of the motion during acquisition and of assuming regularity of breathing. In addition, 4D-CT acquisitions involve a substantial additional dose burden to the patient making many, repeated 4D-CT acquisitions undesirable. Here the authors test the feasibility of an alternative approach to generate patient specific 4D-CT data sets. Methods: In this approach motion information is extracted from 4D-MRI. Simulated 4D-CT data sets [which the authors call 4D-CT(MRI)] are created by warping extracted deformation fields to a static 3D-CT data set. The employment of 4D-MRI sequences for this has the advantage that no assumptions on breathing regularity are made, irregularities in breathing can be studied and, if necessary, many repeat imaging studies (and consequently simulated 4D-CT data sets) can be performed on patients and/or volunteers. The accuracy of 4D-CT(MRI)s has been validated by 4D proton dose calculations. Our 4D dose algorithm takes into account displacements as well as deformations on the originating 4D-CT/4D-CT(MRI) by calculating the dose of each pencil beam based on an individual time stamp of when that pencil beam is applied. According to corresponding displacement and density-variation-maps the position and the water equivalent range of the dose grid points is adjusted at each time instance. Results: 4D dose distributions, using 4D-CT( MRI) data sets as input were compared to results based on a reference conventional 4D-CT data set capturing similar motion characteristics. Almost identical 4D dose distributions could be achieved, even though scanned proton beams are very sensitive to small differences in the patient geometry. In addition, 4D dose calculations have been performed on the same patient, but using 4D-CT(MRI) data sets based on variable breathing patterns to show the effect of possible irregular breathing on active scanned proton therapy. Using a 4D-CT(MRI), including motion irregularities, resulted in significantly different proton dose distributions. Conclusions: The authors have demonstrated that motion information from 4D-MRI can be used to generate realistic 4D-CT data sets on the basis of a single static 3D-CT data set. 4D-CT(MRI) presents a novel approach to test the robustness of treatment plans in the circumstance of patient motion. (c) 2013 American Association of Physicists in Medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据