4.6 Article

MR-guided adaptive focusing of therapeutic ultrasound beams in the human head

期刊

MEDICAL PHYSICS
卷 39, 期 2, 页码 1141-1149

出版社

AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS
DOI: 10.1118/1.3678988

关键词

MRI; adaptive focusing; MR-ARFI; ultrasound transcranial therapy; HIFU

资金

  1. Focused Ultrasound Surgery Fondation
  2. French National Research Agency

向作者/读者索取更多资源

Purpose: This study aims to demonstrate, using human cadavers the feasibility of energy-based adaptive focusing of ultrasonic waves using magnetic resonance acoustic radiation force imaging (MR-ARFI) in the framework of non-invasive transcranial high intensity focused ultrasound (HIFU) therapy. Methods: Energy-based adaptive focusing techniques were recently proposed in order to achieve aberration correction. The authors evaluate this method on a clinical brain HIFU system composed of 512 ultrasonic elements positioned inside a full body 1.5 T clinical magnetic resonance (MR) imaging system. Cadaver heads were mounted onto a clinical Leksell stereotactic frame. The ultrasonic wave intensity at the chosen location was indirectly estimated by the MR system measuring the local tissue displacement induced by the acoustic radiation force of the ultrasound (US) beams. For aberration correction, a set of spatially encoded ultrasonic waves was transmitted from the ultrasonic array and the resulting local displacements were estimated with the MR-ARFI sequence for each emitted beam. A noniterative inversion process was then performed in order to estimate the spatial phase aberrations induced by the cadaver skull. The procedure was first evaluated and optimized in a calf brain using a numerical aberrator mimicking human skull aberrations. The full method was then demonstrated using a fresh human cadaver head. Results: The corrected beam resulting from the direct inversion process was found to focus at the targeted location with an acoustic intensity 2.2 times higher than the conventional non corrected beam. In addition, this corrected beam was found to give an acoustic intensity 1.5 times higher than the focusing pattern obtained with an aberration correction using transcranial acoustic simulation-based on X-ray computed tomography (CT) scans. Conclusions: The proposed technique achieved near optimal focusing in an intact human head for the first time. These findings confirm the strong potential of energy-based adaptive focusing of transcranial ultrasonic beams for clinical applications. (C) 2012 American Association of Physicists in Medicine. [DOI: 10.1118/1.3678988]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据