4.6 Article

The central electrode correction factor for high-Z electrodes in small ionization chambers

期刊

MEDICAL PHYSICS
卷 38, 期 2, 页码 1081-1088

出版社

AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS
DOI: 10.1118/1.3532818

关键词

central electrode factor; P(cel); ionization chambers; Monte Carlo; EGSnrc

资金

  1. OGSST scholarship
  2. NSERC
  3. CRC program
  4. CFI
  5. OIT

向作者/读者索取更多资源

Purpose: Recent Monte Carlo calculations of beam quality conversion factors for ion chambers that use high-Z electrodes [B. R. Muir and D. W. O. Rogers, Med. Phys. 37, 5939-5950 (2010)] have shown large deviations of k(Q) values from values calculated using the same techniques as the TG-51 and TRS-398 protocols. This report investigates the central electrode correction factor, P(cel), for these chambers. Methods: Ionization chambers are modeled and P(cel) is calculated using the EGSnrc user code egs_chamber for three cases: in photon and electron beams under reference conditions; as a function of distance from an iridium-192 point source in a water phantom; and as a function of depth in a water phantom on which a 200 kVp x-ray source or 6 MV beam is incident. Results: In photon beams, differences of up to 3% between P(cel) calculations for a chamber with a high-Z electrode and those used by TG-51 for a 1 mm diameter aluminum electrode are observed. The central electrode correction factor for a given value of the beam quality specifier is different depending on the amount of filtration of the photon beam. However, in an unfiltered 6 MV beam, P(cel), varies by only 0.3% for a chamber with a high-Z electrode as the depth is varied from 1 to 20 cm in water. The difference between P(cel) calculations for chambers with high-Z electrodes and TG-51 values for a chamber with an aluminum electrode is up to 0.45% in electron beams. The central electrode correction, which is roughly proportional to the chambers absorbed dose sensitivity, is found to be large and variable as a function of distance for chambers with high-Z and aluminum electrodes in low-energy photon fields. Conclusions: In this work, ionization chambers that employ high-Z electrodes have been shown to be problematic in various situations. For beam quality conversion factors, the ratio of P(cel) in a beam quality Q to that in a Co-60 beam is required; for some chambers, k(Q) is significantly different from current dosimetry protocol values because of central electrode effects. It would be best for manufacturers to avoid producing ion chambers that use high-Z electrodes. (C) 2011 American Association of Physicists in Medicine. [DOI: 10.1118/1.3532818]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据