4.6 Article

The DOSIMAP, a high spatial resolution tissue equivalent 2D dosimeter for LINAC QA and IMRT verification

期刊

MEDICAL PHYSICS
卷 36, 期 2, 页码 317-328

出版社

WILEY
DOI: 10.1118/1.3013703

关键词

biological tissues; calibration; Cherenkov radiation; dosimeters; ionisation chambers; linear accelerators; phantoms; radiation therapy; solid scintillation detectors

资金

  1. MAESTRO [LSHC-CT-2004-503364]

向作者/读者索取更多资源

The continual need for more accurate and effective techniques in radiation therapy makes it necessary to devise new control means combining high spatial resolution as well as high dose accuracy. Intensity modulated radio therapy (IMRT) allows highly conformed fields with high spatial gradient and therefore requires a precise monitoring of all the multileaf positions. In response to this need, the authors have developed a new 2D tissue equivalent dosimeter with high spatial resolution. A plastic scintillator sheet is sandwiched between two polystyrene blocks and the emitted light is captured by a high resolution camera. A newly developed procedure described herein allows efficient discrimination of the scintillation from the parasitic Cerenkov radiation. This processing is applied on the cumulated image from a sequence of images taken during an irradiation field at a rate of 10 images/s. It provides a high resolution mapping of the cumulated dose in quasireal time. The dosimeter is tissue equivalent (ICRU-44) and works both for electrons and photons without complex parameter adjustment since phantom and detector materials are identical. Instrument calibration is simple and independent of the irradiation conditions (energy, fluence, quality, ...). In this article, the authors present the principle of the dosimeter and its calibration procedure. They compare the results obtained for photons and electron beams with ionization chamber measurements in polystyrene. Technical specifications such as accuracy and repeatability are precisely evaluated and discussed. Finally, they present different IMRT field measurements and compare DOSIMAP measurements to TPS simulations and dosimetric film profiles. The results confirm the excellent spatial resolution of the instrument and its capacity to inspect the leaf positions for each segment of a given field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据