4.6 Article

Modeling of plasmonic heating from individual gold nanoshells for near-infrared laser-induced thermal therapy

期刊

MEDICAL PHYSICS
卷 36, 期 10, 页码 4664-4671

出版社

WILEY
DOI: 10.1118/1.3215536

关键词

gold nanoshells; photothermal effect; thermal ablation; hyperthermia

向作者/读者索取更多资源

Gold nanoparticles can be engineered to target cancerous cells and at the same time designed to absorb specific wavelengths of light. Consequently, with the presence of optically tunable gold nanoparticles such as gold nanoshells, light can be effectively converted to heat via photothermal effect well enough to raise the temperature of medium surrounding gold nanoshells for thermal ablation or hyperthermia treatments of cancers. In this study, the authors proposed a new computational method to estimate thermal response of gold nanoshells embedded in a tissue-like medium when illuminated by a near-infrared (NIR) laser. Specifically, the light transport theory with diffusion approximation was initially applied to model the temperature rise within a medium without gold nanoshells as a result of the dissipation of the NIR laser power throughout the medium. After then, the heat generated by individual gold nanoshells due to photothermal effect was calculated and combined with the results for the medium without gold nanoshells to estimate the global elevation of temperature within the gold nanoshell-laden medium. The current computational model was tested for its validity using two different phantom examples, one of which was similar to a previously reported phantom experiment. The test demonstrated the capability of the current model in terms of producing qualitatively reasonable results, while it also revealed a number of potential differences in the assumptions for the current model and previous experiment. After an adjustment in the model parameters to properly take into account such differences, the computational results and the experimental data matched reasonably well within the average percentage difference of 10%. (C) 2009 American Association of Physicists in Medicine. [DOI: 10.1118/1.3215536]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据