4.6 Article

A new weighting function to achieve high temporal resolution in circular cone-beam CT with shifted detectors

期刊

MEDICAL PHYSICS
卷 35, 期 12, 页码 5898-5909

出版社

WILEY
DOI: 10.1118/1.3013700

关键词

computerised tomography; medical image processing; X-ray detection

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [FOR 661]

向作者/读者索取更多资源

The size of the field of measurement (FOM) in computed tomography is limited by the size of the x-ray detector. In general, the detector is mounted symmetrically with respect to the rotation axis such that the transaxial FOM diameter approximately equals the lateral dimensions of the detector when being demagnified to the isocenter. To enlarge the FOM one may laterally shift the detector by up to 50% of its size. Well-known weighting functions must then be applied to the raw data prior to convolution and backprojection. In this case, a full scan or a scan with more than 360 degrees angular coverage is required to obtain complete data. However, there is a small region, the inner FOM, that is covered redundantly and where a partial scan reconstruction may be sufficient. A new weighting function is proposed that allows one to reconstruct partial scans in that inner FOM while it reconstructs full scan or overscan data for the outer FOM, which is the part that contains no redundancies. The presented shifted detector partial scan algorithm achieves a high temporal resolution in the inner FOM while maintaining truncation-free images for the outer part. The partial scan window can be arbitrarily shifted in the angular direction, what corresponds to shifting the temporal window of the data shown in the inner FOM. This feature allows for the reconstruction of dynamic CT data with high temporal resolution. The approach presented here is evaluated using simulated and measured data for a dual source micro-CT scanner with rotating gantry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据