4.4 Article

Nonstationarity of dynamic cerebral autoregulation

期刊

MEDICAL ENGINEERING & PHYSICS
卷 36, 期 5, 页码 576-584

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.medengphy.2013.09.004

关键词

Cerebral blood flow; Time series analysis; Cerebral haemodynamics; Review paper; Mathematical modelling

向作者/读者索取更多资源

Dynamic cerebral autoregulation (dCA), the transient response of cerebral blood flow (CBF) to rapid changes in arterial blood pressure (BP), is usually quantified by parameters extracted from time- or frequency-domain analysis. Reproducibility studies of dCA parameters and consideration of the physiological determinants of the dynamic BP-CBF relationship provide strong indications that dCA is a nonstationary process. As a consequence, new analytical approaches are needed to estimate dCA parameters with greater temporal resolution thus allowing its longitudinal patterns of variability to be assessed in health and disease states. Techniques proposed for this task include ARMA models with moving windows, recursive least-squares, Laguerre-Volterra networks, wavelet phase synchronisation, and multimodal pressure-flow analysis. Initial results with these techniques have revealed the influence of some key determinants of dCA nonstationarity, such as PaCO2, as well as their ability to reflect dCA impairment in different clinical conditions. One key priority for future work is the development and validation of multivariate time-varying techniques to minimise the influence to the many co-variates which contribute to dCA nonstationarity. (C) 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据