4.7 Article Proceedings Paper

Facile synthesis of Z-scheme graphitic-C3N4/Bi2MoO6 nanocomposite for enhanced visible photocatalytic properties

期刊

APPLIED SURFACE SCIENCE
卷 358, 期 -, 页码 377-384

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2015.06.183

关键词

C3N4; Bi2MoO6; Photocatalyst; Charge transfer; Methylene blue

资金

  1. National Natural Science Foundation of China [51302101, 51302100]
  2. Foundation for Young Talents in College of Anhui Province [12600941]
  3. Natural Science Foundation of Anhui Province [1408085QE78, 1508085ME100]
  4. Collaborative Innovation Center of Advanced Functional Materials [XTZX103732015008]

向作者/读者索取更多资源

The band engineering of visible-light-driven photocatalysts is a promising route for harnessing of effective solar energy to perform high chemical reactions and to treat environmental pollution. In this study, two narrow band gap semiconductor nanomaterials, graphitic carbon nitride (g-C3N4) and Bi2MoO6, were selected and coupled to form series of g-C3N4/Bi2MoO6 photocatalysts. Their structure, light absorption wavelength range, charge transport properties and energy level were investigated. Through perfect manipulation of their composition, enhanced photocatalytic activity of the Z-scheme g-C3N4/Bi2MoO6 photocatalysts with efficient reduction of recombination of photogenerated electrons and holes was achieved. The optimized Z-scheme g-C3N4/Bi2MoO6 photocatalysts with 25 wt% g-C3N4 showed apparent pseudo-first-order rate constant k(app) as high as 0.0688 min(-1), which was 4.8 times and 8.2 times higher than that of g-C3N4 and Bi2MoO6 photocatalyst, respectively. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据