4.7 Article Proceedings Paper

Ternary g-C3N4/ZnO/AgCl nanocomposites: Synergistic collaboration on visible-light-driven activity in photodegradation of an organic pollutant

期刊

APPLIED SURFACE SCIENCE
卷 358, 期 -, 页码 261-269

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2015.08.149

关键词

g-C3N4/ZnO/AgCL; Nanocomposite; Photocatalyst; Visible-light-driven

资金

  1. University of Mohaghegh Ardabili

向作者/读者索取更多资源

The present work demonstrates the preparation of ternary g-C3N4/ZnO/AgCl nanocomposites, as novel visible-light-driven photocatalysts, using a facile large-scale methodology. The microstructure, morphology, purity, thermal, and spectroscopic properties of the prepared samples were studied using XRD, TEM, EDX, TG, UV-vis DRS, FT-IR, and PL techniques. Compared with the g-C3N4/ZnO and g-C3N4/AgCl nanocomposites, the g-C3N4/ZnO/AgCl nanocomposites displayed higher photocatalytic activity for degradation of rhodamine B under visible-light irradiation. Photocatalytic activity of the g-C3N4/ZnO/AgCl (40%) nanocomposite is about 9.5, 7.5, and 6-fold higher than those of the g-C3N4, g-C3N4/ZnO, and g-C3N4/AgCl samples, respectively. The enhanced photocatalytic activity of the nanocomposites was mainly attributed to efficiently separation of the charge carriers by synergistic collaboration of ZnO and AgCl in removing photogenerated electrons from g-C3N4. Furthermore, the results showed that the photocatalytic activity of the nanocomposite considerably depends on the preparation time, calcination temperature, and scavengers of the reactive species. Finally, the nanocomposite was found to be a reusable photocatalyst. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据