4.5 Article

Higher levels of heat shock proteins in longer-lived mammals and birds

期刊

MECHANISMS OF AGEING AND DEVELOPMENT
卷 132, 期 6-7, 页码 287-297

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.mad.2011.06.002

关键词

Protein homeostasis; Maximum lifespan; Aging; Protein folding; Heat shock proteins

向作者/读者索取更多资源

Cellular stress resistance is generally associated with longevity, but the mechanisms underlying this phenotype are not clear. In invertebrate models there is a clear role for heat shock proteins (Hsps) and organelle-specific unfolded protein responses (UPR) in longevity. However, this has not been demonstrated in vertebrates. Some Hsp amino acid sequences are highly conserved amongst mammals and birds. We used antibodies recognizing conserved regions of Hsp60 (primarily mitochondrial), Hsp70 (primarily cytosolic), GRP78 (Bip) and GRP94 (endoplasmic reticulum) to measure constitutive levels of these proteins in brain, heart and liver of 13 mammalian and avian species ranging in maximum lifespan from 3 to 30 years. In all three tissues, the expression of these proteins was highly correlated with MLSP, indicating higher basal levels of Hsp expression are characteristic of longer-lived species. We also quantified the levels of Hsp60, Hsp70 and GRP78 in brain and heart tissue of young adult (6-7 month old) Snell dwarf mice and normal littermates. Snell dwarf mice are characterized by a single gene mutation that is associated with an similar to 50% increase in lifespan. However, neither Hsp60, nor Hsp70, nor GRP78 levels were elevated in brain or heart tissue from Snell dwarf mice compared to normal littermates. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据