4.7 Article

Stabilizing slider-crank mechanism with clearance joints

期刊

MECHANISM AND MACHINE THEORY
卷 53, 期 -, 页码 17-29

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.mechmachtheory.2012.02.006

关键词

Clearance joint; Slider crank mechanism; Delayed feedback control

向作者/读者索取更多资源

In general, in dynamic analysis of mechanical systems, joints are assumed to be ideal without clearance. When joint clearance is introduced, dynamic response is considerably changed. Degradation of dynamic performance, reduction in components fatigue life and generation of undesirable vibrations result from impacts of mating parts in clearance joint. More generally, system responses tend to be chaotic and unpredictable instead of being periodic and regular. In this study, a slider-crank mechanism with a revolute clearance joint between the slider and the connecting rod is addressed. It is shown that the system may exhibit chaotic behavior under specific conditions. A control mechanism based on the Pyragas method is presented for stabilizing an unstable periodic orbit embedded in the chaotic attractor. Under a successful control, contact loss is eliminated and the system exhibits periodic motion by applying only small perturbations. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据