4.4 Article

Rapid evaluation of the fatigue limit in composites using infrared lock-in thermography and acoustic emission

期刊

MECHANICS RESEARCH COMMUNICATIONS
卷 54, 期 -, 页码 14-20

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.mechrescom.2013.09.005

关键词

Fatigue limit; Lock-in thermography; Acoustic emission; CMC

向作者/读者索取更多资源

Fatigue limit determination via the conventional Wohler-curve method is associated with extended experimental times as it requires testing of a large number of specimens. The current paper introduces a methodology for fast, reliable and experimentally economic determination of the fatigue limit in monolithic and composite materials by means of combined usage of two nondestructive inspection methods, namely infrared (IR) lock-in thermography and acoustic emission (AE). IR thermography, as a real-time and non-contact technique, allowed the detection of heat waves generated due to thermo-mechanical coupling as well as of the energy dissipated intrinsically during dynamic loading of the material. AE, on the other hand, was employed to record the transient waves resulting from crack propagation events. Aluminum grade 1050 H16 and cross-ply SiC/BMAS ceramic matrix composites were subjected to fatigue loading at various stress levels and were monitored by an IR camera and AE sensors. The fatigue limit of the monolithic material, obtained by the lock-in infrared thermography technique and supported by acoustic emission was found to be in agreement with measurements obtained by the conventional S-N curve method. The fatigue limit of the ceramic matrix composite was validated with acoustic emission data. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据