4.7 Article

Numerical modeling of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments

期刊

MECHANICS OF MATERIALS
卷 42, 期 6, 页码 615-627

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mechmat.2009.09.009

关键词

Impulsive pressure loads; Direct pressure-pulse experiments; Physics-based constitutive models; Finite-element analysis; Fluid-structure interaction; Metal-polymer bilayer composites

资金

  1. ONR (MURI) [00140210666]

向作者/读者索取更多资源

Results of computational modeling and simulation of the response of monolithic DH-36 steel plates and bilayer steel-polyurea plates to impulsive loads in direct pressure-pulse experiments (Amini et al., in press-b), are presented and discussed. The corresponding experiments and their results are presented in an accompanying paper (Amini et al., 2010). The entire experimental setup is modeled using the finite-element code, LS-DYNA, in which a physics-based temperature- and strain rate-sensitive constitutive model for DH-36 steel, developed by Nemat-Nasser and Guo (2003b) and an experimentally supported temperature-, rate-, and pressure-sensitive constitutive model for polyurea, developed and incorporated into the computer code, LS-DYNA, by Amirkhizi et al. (2006), have been implemented. The transient response of the plates under impulsive pressure loads is studied, focusing on the effects of the relative position of polyurea with respect to the loading direction, the thickness of the polyurea layer, and the polyurea-steel interface bonding strength. The numerical simulations of the entire experiment support the experimentally observed results reported by Amini et al. (2010). (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据