4.7 Article

Lattice models of polycrystalline micro structures: A quantitative approach

期刊

MECHANICS OF MATERIALS
卷 40, 期 1-2, 页码 17-36

出版社

ELSEVIER
DOI: 10.1016/j.mechmat.2007.02.005

关键词

-

向作者/读者索取更多资源

This paper addresses the issue of creating a lattice model suitable for design purposes and capable of quantitative estimates of the mechanical properties of a disordered microstructure. The lack of resemblance between idealized lattice models and real materials has limited these models to the realm of qualitative analysis. Two procedures based on the same methodology are presented in the two-dimensional case to achieve the rigorous mapping of the geometrical and the elastic properties of a disordered polycrystalline microstructure into a spring lattice. The theory is validated against finite elements models and literature data of NiAl. The statistical analysis of 900 models provided the effective Young's modulus and Poisson ratio as function of the lattice size. The lattice models that were created have in average the same Young's modulus of the real microstructure. However, the Poisson's ratio could not be matched in the two-dimensional case. The spring constants of the lattices from this technique follow a Gaussian distribution, which intrinsically reflects the mechanical and geometrical disorder of the microscale. The detailed knowledge of the microstructure and the Voronoi tessellation necessary to implement this technique are supplied by modern. laboratory equipments and software. As an illustrative example of lattice application, damage simulations of several biaxial loading schemes are briefly reported to show the effectiveness of discrete models towards elastic anisotropy induced by damage and damage localization. (C) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据