4.5 Article Proceedings Paper

Modeling of Progressive Failure in Ductile Matrix Composites Including Local Matrix Yielding

期刊

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15376490903133384

关键词

ductile matrix composites; Monte Carlo simulation; size dependence

向作者/读者索取更多资源

In this article a theoretical model based upon micromechanical analysis of damage is developed to predict nonlinear stress-strain response and progressive failure of continuous fiber-reinforced metal matrix composites (MMCf). A micromechanically analytical model using an influence function superimposition technique is developed to derive stress profiles for any configuration of breaks in MMCf under tensile loading, by considering local matrix tensile yield and interface yield (or sliding). Several hundred Monte Carlo simulations including these failure mechanisms have been executed to simulate failure process and determine statistically the ultimate strength distributions of the composites. Site discretization, material sizes and shape parameter in Weibull distribution are studied to investigate the dependence of ultimate strength on these factors. It is shown that the size dependence of composite ultimate strength is dominated by fiber strength statistics and stress redistribution due to progressive microdamage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据