4.7 Article

Empirical identification of squeeze-film damper bearings using neural networks

期刊

MECHANICAL SYSTEMS AND SIGNAL PROCESSING
卷 35, 期 1-2, 页码 307-323

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ymssp.2012.08.014

关键词

Squeeze-film damper; System identification; Neural networks; Nonlinear dynamics

向作者/读者索取更多资源

To date empirically obtained SFD models have been based upon the determination of linearised force coefficients; such models are severely limited in their range of applicability since they are only valid for small perturbations from a mean position. The present research provides the introduction and validation of a nonlinear SFD identification technique that uses neural networks, trained from experimental data, to reproduce the input-output function over the full range of the SFD clearance. Details of the commissioning of a specially designed identification test rig and its associated data acquisition system are presented. The neural network's construction and training process is described and relevant testing is detailed. The empirically identified neural network is progressively validated, culminating in remarkably accurate nonlinear vibration response prediction of an SFD test rig subjected to external dual-frequency orthogonal excitation, as present in twin-spool engines (where the nonlinear vibrations are driven by the unbalance on the two rotors turning at different speeds). When used within the dynamic analysis of the test rig, the trained neural network is shown to be capable of predicting complex nonlinear phenomena with excellent accuracy. By comparison to an advanced theoretical model, the results show that the neural networks are able to capture the effects of features that are difficult to include in a hydrodynamic model or are particular to a given SFD. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据