4.5 Article

Vibration based damage detection in a uniform strength beam using genetic algorithm

期刊

MECCANICA
卷 44, 期 6, 页码 697-710

出版社

SPRINGER
DOI: 10.1007/s11012-009-9207-1

关键词

Damage; Genetic algorithm (GA); Residual force; Eigen value; Uniform strength beam

向作者/读者索取更多资源

Cantilever steel beams of uniform strength are having various industrial applications. In particular when it is used as leaf spring it undergoes very large deflection in comparison to beam of uniform cross section. The damage occurs in these beams mainly due to fatigue loading. Early detection of damage in such type of beams is very essential to avoid a major failure or accident. In this paper, firstly formulation of an objective function for the genetic search optimization procedure along with the residual force method are presented for the identification of macroscopic structural damage in an uniform strength beam. Two cases have been investigated here. In the first case the width is varied keeping the strength of beam uniform throughout and in the second case both width and depth are varied to represent a special case of uniform strength beam. The developed model require experimentally determined data as input and detect the location and extent of the damage in the beam. Here, experimental data are simulated numerically by using finite element models of structures with inclusion of random noise on the vibration characteristics. It has been shown that the damage may be identified for the said problems with a good accuracy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据