4.5 Article

Shannon wavelet spectrum analysis on truncated vibration signals for machine incipient fault detection

期刊

MEASUREMENT SCIENCE AND TECHNOLOGY
卷 23, 期 5, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-0233/23/5/055604

关键词

fault detection; exponential moving average; wavelet spectrum analysis; vibration; bearing

资金

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada
  2. Carleton University

向作者/读者索取更多资源

Although a variety of methods have been proposed in the literature for machine fault detection, it still remains a challenge to extract prominent features from random and nonstationary vibratory signals, a typical representative of which are the resonance signatures generated by incipient defects on the rolling elements of ball bearings. Due to its random and nonstationary nature, the involved signal generally possesses a low signal-to-noise ratio, where the classical signal processing methods cannot be effectively applied and the extracted features are usually submerged into the severe background noise. In this paper, a novel random and nonstationary vibratory signature analysis (R&N-VSA) technique is presented to address this challenge. The original vibration signal is decomposed into fault-related and non-fault-related signal segments, and multi-level exponential moving average power filtering is suggested to guide this decomposition. Instead of analyzing the whole vibratory signal, the developed Shannon wavelet spectrum analysis is more efficiently applied on the truncated fault-related signal segments so as to enhance the features' characteristics. The effectiveness of the proposed technique is examined through a series of tests with two experimental setups, and the investigation results show that the developed R&N-VSA technique is an effective signal processing technique for incipient machine fault detection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据