4.5 Article

An advanced approach to finding magnetometer zero levels in the interplanetary magnetic field

期刊

MEASUREMENT SCIENCE AND TECHNOLOGY
卷 19, 期 5, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-0233/19/5/055104

关键词

magnetometer calibration; interplanetary magnetic field; solar wind; Alfven waves

向作者/读者索取更多资源

For a magnetometer that measures weak interplanetary fields, the in-flight determination of zero levels is a crucial step of the overall calibration procedure. This task is more difficult when a time-varying magnetic field of the spacecraft interferes with the surrounding natural magnetic field or when the spacecraft spends only short periods of time in the interplanetary magnetic field. Thus it is important to examine the algorithms by which these zero levels are determined, and optimize them. We find that the method presented by Davis and Smith (1968 EOS Trans. AGU 49 257) has significant mathematical advantages over that published by Belcher (1973 J. Geophys. Res. 71 5509) as well as over the correlation technique published by Hedgecock (1975 Space Sci. Instrum. 1 83-90). We present an alternative derivation of the Davis-Smith method which illustrates that it is also a correlation technique. It also works with first differences as well as filtered data as input. In contrast to the postulate by Hedgecock (1975 Space Sci. Instrum. 1 83-90), we find that using first differences in general provides no advantage in determining the zero levels. Our new algorithm obtains zero levels by searching for pure rotations of the interplanetary magnetic field, with a set of sophisticated selection criteria. With our algorithm, we require shorter periods (of the order of a few hours, depending on solar wind conditions) of interplanetary data for accurate zero level determination than previously published algorithms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据