4.6 Article

On a new class of differential variational inequalities and a stability result

期刊

MATHEMATICAL PROGRAMMING
卷 139, 期 1-2, 页码 205-221

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10107-013-0669-5

关键词

-

向作者/读者索取更多资源

This paper addresses a new class of differential variational inequalities that have recently been introduced and investigated in finite dimensions as a new modeling paradigm of variational analysis to treat many applied problems in engineering, operations research, and physical sciences. This new subclass of general differential inclusions unifies ordinary differential equations with possibly discontinuous right-hand sides, differential algebraic systems with constraints, dynamic complementarity systems, and evolutionary variational systems. The purpose of this paper is two-fold. Firstly, we show that these differential variational inequalities, when considering slow solutions and the more general level of a Hilbert space, contain projected dynamical systems, another recent subclass of general differential inclusions. This relation follows from a precise geometric description of the directional derivative of the metric projection in Hilbert space, which is based on the notion of the quasi relative interior. Secondly we are concerned with stability of the solution set to this class of differential variational inequalities. Here we present a novel upper set convergence result with respect to perturbations in the data, including perturbations of the associated set-valued maps and the constraint set. Here we impose weak convergence assumptions on the perturbed set-valued maps, use the monotonicity method of Browder and Minty, and employ Mosco convergence as set convergence. Also as a consequence, we obtain a stability result for linear complementarity systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据