4.6 Article Proceedings Paper

Semidefinite relaxations for quadratically constrained quadratic programming: A review and comparisons

期刊

MATHEMATICAL PROGRAMMING
卷 129, 期 1, 页码 129-157

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10107-011-0462-2

关键词

Quadratic programming; Semidefinite programming; Lagrangian relaxation; Nonconvex optimization

向作者/读者索取更多资源

At the intersection of nonlinear and combinatorial optimization, quadratic programming has attracted significant interest over the past several decades. A variety of relaxations for quadratically constrained quadratic programming (QCQP) can be formulated as semidefinite programs (SDPs). The primary purpose of this paper is to present a systematic comparison of SDP relaxations for QCQP. Using theoretical analysis, it is shown that the recently developed doubly nonnegative relaxation is equivalent to the Shor relaxation, when the latter is enhanced with a partial first-order relaxation-linearization technique. These two relaxations are shown to theoretically dominate six other SDP relaxations. A computational comparison reveals that the two dominant relaxations require three orders of magnitude more computational time than the weaker relaxations, while providing relaxation gaps averaging 3% as opposed to gaps of up to 19% for weaker relaxations, on 700 randomly generated problems with up to 60 variables. An SDP relaxation derived from Lagrangian relaxation, after the addition of redundant nonlinear constraints to the primal, achieves gaps averaging 13% in a few CPU seconds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据