4.3 Article

Damage Localization of Cable-Supported Bridges Using Modal Frequency Data and Probabilistic Neural Network

期刊

MATHEMATICAL PROBLEMS IN ENGINEERING
卷 2014, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2014/837963

关键词

-

资金

  1. Research Grants Council of the Hong Kong Special Administrative Region, China [PolyU 5224/13E]
  2. Shenzhen Science and Technology Innovation Commission [JC201105201141A]

向作者/读者索取更多资源

This paper presents an investigation on using the probabilistic neural network (PNN) for damage localization in the suspension Tsing Ma Bridge (TMB) and the cable-stayed Ting Kau Bridge (TKB) from simulated noisy modal data. Because the PNN approach describes measurement data in a Bayesian probabilistic framework, it is promising for structural damage detection in noisy conditions. For locating damage on the TMB deck, the main span of the TMB is divided into a number of segments, and damage to the deck members in a segment is classified as one pattern class. The characteristic ensembles (training samples) for each pattern class are obtained by computing the modal frequency change ratios from a 3D finite element model (FEM) when incurring damage at different members of the same segment and then corrupting the analytical results with random noise. The testing samples for damage localization are obtained in a similar way except that damage is generated at locations different from the training samples. For damage region/type identification of the TKB, a series of pattern classes are defined to depict different scenarios with damage occurring at different portions/components. Research efforts have been focused on evaluating the influence of measurement noise level on the identification accuracy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据