4.3 Article

Optimal Fusion Filtering in Multisensor Stochastic Systems with Missing Measurements and Correlated Noises

期刊

MATHEMATICAL PROBLEMS IN ENGINEERING
卷 2013, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2013/418678

关键词

-

资金

  1. Ministerio de Ciencia e Innovacion (Programa FPU) [MTM2011-24718]
  2. Junta de Andalucia [P07-FQM-02701]

向作者/读者索取更多资源

The optimal least-squares linear estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems with missing measurements and autocorrelated and cross-correlated noises. The stochastic uncertainties in the measurements coming from each sensor (missing measurements) are described by scalar random variables with arbitrary discrete probability distribution over the interval [0, 1]; hence, at each single sensor the information might be partially missed and the different sensors may have different missing probabilities. The noise correlation assumptions considered are (i) the process noise and all the sensor noises are one-step autocorrelated; (ii) different sensor noises are one-step cross-correlated; and (iii) the process noise and each sensor noise are two-step cross-correlated. Under these assumptions and by an innovation approach, recursive algorithms for the optimal linear filter are derived by using the two basic estimation fusion structures; more specifically, both centralized and distributed fusion estimation algorithms are proposed. The accuracy of these estimators is measured by their error covariance matrices, which allow us to compare their performance in a numerical simulation example that illustrates the feasibility of the proposed filtering algorithms and shows a comparison with other existing filters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据