4.5 Article

A mathematical model of HiF-1α-mediated response to hypoxia on the G1/S transition

期刊

MATHEMATICAL BIOSCIENCES
卷 248, 期 -, 页码 31-39

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.mbs.2013.11.007

关键词

Hypoxia; HiF-1 alpha; G1/S transition; Quiescence; Cell cycle arrest; Cancer

向作者/读者索取更多资源

Hypoxia is known to influence the cell cycle by increasing the G1 phase duration or by inducing a quiescent state (arrest of cell proliferation). This entry into quiescence is a mean for the cell to escape from hypoxia-induced apoptosis. It is suggested that some cancer cells have gain the advantage over normal cells to easily enter into quiescence when environmental conditions, such as oxygen pressure, are unfavorable [43,1]. This ability contributes in the appearance of highly resistant and aggressive tumor phenotypes [2]. The HiF-1 alpha factor is the key actor of the intracellular hypoxia pathway. As tumor cells undergo chronic hypoxic conditions, HiF-1 alpha is present in higher level in cancer than in normal cells. Besides, it was shown that genetic mutations promoting overstabilization of HiF-1 alpha are a feature of various types of cancers [7]. Finally, it is suggested that the intracellular level of HiF-1 alpha can be related to the aggressiveness of the tumors [53,24,4,10]. However, up to now, mathematical models describing the G1/S transition under hypoxia, did not take into account the HiF-1 alpha factor in the hypoxia pathway. Therefore, we propose a mathematical model of the G1/S transition under hypoxia, which explicitly integrates the HiF-1 alpha pathway. The model reproduces the slowing down of G1 phase under moderate hypoxia, and the entry into quiescence of proliferating cells under severe hypoxia. We show how the inhibition of cyclin D by HiF-1 alpha can induce quiescence; this result provides a theoretical explanation to the experimental observations of Wen et al. (2010) [50]. Thus, our model confirms that hypoxia-induced chemoresistance can be linked, for a part, to the negative regulation of cyclin D by HiF-1 alpha. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据