4.7 Article

On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity

期刊

APPLIED SURFACE SCIENCE
卷 324, 期 -, 页码 324-331

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2014.10.161

关键词

Visible light; Rhodamine B; Ag3VO4; g-C3N4; Heterojunction

资金

  1. National Natural Science Foundation of China [21273080]

向作者/读者索取更多资源

Heterostructured photocatalysts Ag3VO4/g-C3N4 were prepared by deposition-precipitation method in order to anchor Ag3VO4 on the surface of N-vacancy g-C3N4 (g-C3N4-VN). The photocatalytic activity of the samples was evaluated by degrading rhodamine B (RhB) in aqueous solution. Compared with the pure Ag3VO4 and g-C3N4-VN, the heterojuncted photocatalyst 65 wt% Ag3VO4/g-C3N4-VN exhibits the best activity under visible light irradiation. The photodegradation rate constant of 65 wt% Ag3VO4/g-C3N4-VN is 0.0556 min(-1), which is 23.4, 5.8 and 6.4 times of that of pure Ag3VO4, pure g-C3N4-VN and P25, respectively. The excellent photocatalytic performance of the Ag3VO4/g-C3N4-VN catalysts can be ascribed to the matched band structures of Ag3VO4 and g-C3N4, which strengthened the formation of the heterojuncted photocatalyst. The unique heterostructured photocatalyst is favorable for retarding the recombination of photogenerated electrons and holes, thus the photocatalytic activity is significantly increased. Further experiment also reveals that the center dot O-2(-) and h(+) are the major active species in the degradation of RhB. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据